Нейрон. страница 5

 

концентрации ионов натрия и калия по ту и другую сторону мембраны различаются, внутренность аксона имеет отрицательный потенциал примерно в 70 мВ по отношению к наружной среде.
Четверть века тому назад в своих классических работах по изучению передачи нервного импульса вдоль гигантского аксона кальмара английские исследователи А. Ходжкин, А. Хаксли и Б. Катц показали, что распространение нервного импульса сопровождается резкими изменениями проницаемости мембраны аксона для ионов натрия и калия. Когда нервный импульс возникает в основании аксона (в большинстве случаев он генерируется клеточным телом в ответ на активацию дендритных синапсов), трансмембранная разность потенциалов в этом месте локально понижается. Непосредственно впереди области с измененным потенциалом (по направлению распространения нервного импульса) открываются мембранные каналы, пропускающие в клетку ионы натрия.
Распространение нервного импульса по аксону сопряжено с появлением локальных потоков ионов натрия (Na + ) внутрь, сменяемых потоками ионов калия (К+) наружу через каналы, которые регулируются изменениями напряжения на мембране аксона. Электрический процесс, приводящий к распространению нервного импульса вдоль аксона, обычно развивается в клеточном теле. Генерация импульса начинается со слабой деполяризации, или уменьшения отрицательного потенциала внутренней поверхности мембраны, в том месте, где аксон отходит от клеточного тела. Этот небольшой сдвиг потенциала открывает некоторые из натриевых каналов, вызывая тем самым дальнейшее уменьшение потенциала.
Поток ионов натрия внутрь будет ускоряться до тех пор, пока внутренняя поверхность мембраны не станет локально положительной. Изменение знака потенциала приведет к закрыванию натриевых каналов и открыванию калиевых. Поток ионов калия наружу быстро восстановит отрицательный потенциал. Кратковременная реверсия потенциала, получившая название потенциала действия, сама распространяется по аксону (1, 2). После короткого рефрактерного периода за первым импульсом может следовать второй (3). Скорость распространения нервного импульса на схеме соответствует таковой в гигантском аксоне кальмара.
Этот процесс является самоусиливающимся: поток ионов натрия через мембрану способствует открыванию большего числа каналов и облегчает другим ионам возможность следовать за ними. Проникшие в клетку ионы натрия изменяют отрицательный внутренний потенциал мембраны на положительный. Вскоре после открывания натриевые каналы закрываются, но теперь открывается другая группа каналов, которая позволяет ионам калия выходить наружу. Этот поток восстанавливает потенциал внутри аксона до величины его потенциала покоя, т.е. до —70 мВ. Резкий скачок потенциала сначала в положительную, а затем в отрицательную сторону, который выглядит на экране осциллографа как пик («спайк»), известен под названием потенциала действия и является электрическим выражением нервного импульса. Волна изменения потенциала стремительно проносится по аксону до самого его конца во многом подобно тому, как бежит пламя по бикфордову шнуру.
Это краткое описание нервного импульса иллюстрирует важность каналов для электрической активности нейронов и подчеркивает два фундаментальных свойства каналов: избирательность и наличие воротных механизмов. Каналы проницаемы избирательно, и степень избирательности варьирует в широких пределах. Так, каналы одного типа позволяют проходить ионам натрия, но сильно препятствуют прохождению ионов калия, тогда как каналы другого типа делают обратное. Однако избирательность редко бывает абсолютной.
Канал одного типа, который практически не обладает избирательностью, позволяет проходить примерно 85 ионам натрия на каждые 100 ионов калия; другой канал, с большей избирательностью, пропускает только около 7 ионов натрия на каждые 100 ионов калия. Канал первого типа, известный как активируемый ацетилхолином, имеет пору диаметром около 0,8 нм, которая заполнена водой. У канала второго типа, известного как калиевый канал, пора

 

 


2014 - 2020  ©WEB-ASTRAL